Trk Receptor Expression and Inhibition in Neuroblastomas

GM Brodeur, et al. (2009)
Clinical Cancer Research

  • There is no summary for this article.
Medical and Health Science
 Abstract
Neuroblastoma, the most common and deadly solid tumor in children, exhibits heterogeneous clinical behavior, from spontaneous regression to relentless progression. Current evidence suggests that the TRK family of neurotrophin receptors plays a critical role in these diverse behaviors. Neuroblastomas expressing TrkA are biologically favorable and prone to spontaneous regression or differentiation, depending on the absence or presence of its ligand (NGF) in the microenvironment. In contrast, TrkB-expressing tumors frequently have MYCN amplification and are very aggressive and often fatal tumors. These tumors also express the TrkB ligand (BDNF), resulting in an autocrine or paracrine survival pathway. Exposure to BDNF promotes survival, drug resistance, and angiogenesis of TrkB-expressing tumors. Here we review the role of Trks in normal development, the different functions of Trk isoforms, and the major Trk signaling pathways. We also review the roles these receptors play in the heterogeneous biological and clinical behavior of neuroblastomas, and the activation of Trk receptors in other cancers. Finally we address the progress that has been made in developing targeted therapy with Trk-selective inhibitors to treat neuroblastomas and other tumors with activated Trk expression.

Comments are visible to all users.

Login or Register for free to comment on this publication.

Your personal notes related to this publication. These notes are only visible to you, will save automatically, and will be here when you come back.

Login or Register for free to make personal notes.
Authors: GM Brodeur, JE Minturn, R Ho, AM Simpson, R Iyer, CR Varela, JE Light, V Kolla, AE Evans
Year published: 2009
DOI: 10.1158/1078-0432.ccr-08-1815
Full-text available: Yes
Journal: Clinical Cancer Research
Publisher: American Association for Cancer Research (AACR)