The P7C3 class of aminopropyl carbazole chemicals fosters the survival of neurons in a variety of rodent models of neurodegeneration or nerve cell injury. To uncover its mechanism of action, an active derivative of P7C3 was modified to contain both a benzophenone for photocrosslinking and an alkyne for CLICK chemistry. This derivative was found to bind nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme involved in the conversion of nicotinamide into nicotinamide adenine dinucleotide (NAD). Administration of active P7C3 chemicals to cells treated with doxorubicin, which induces NAD depletion, led to a rebound in intracellular levels of NAD and concomitant protection from doxorubicin-mediated toxicity. Active P7C3 variants likewise enhanced the activity of the purified NAMPT enzyme, providing further evidence that they act by increasing NAD levels through its NAMPT-mediated salvage. Copyright © 2014 Elsevier Inc. All rights reserved.

Comments are visible to all users.

Login or Register for free to comment on this publication.

Your personal notes related to this publication. These notes are only visible to you, will save automatically, and will be here when you come back.

Login or Register for free to make personal notes.
Authors: G Wang, T Han, D Nijhawan, P Theodoropoulos, J Naidoo, S Yadavalli, H Mirzaei, A Pieper, J Ready, S Mcknight
Year published: 2014
DOI: 10.1016/j.cell.2014.07.040
Full-text available: Yes
Journal: Cell
Publisher: Elsevier BV